

FINAL CA – MAY 2018

ADVANCED MANAGEMENT ACCOUNTING

Test Code – F56 Date : 11.02.2018

(50 Marks)

Note: All questions are compulsory.

Question 1(4 Marks)

- a. Under the Hungarian Assignment Method, the prerequisite to assign any job is that each row and column must have a zero value in its corresponding cells. If any row or column does not have any zero value then to obtain zero value, each cell values in the row or column is subtracted by the correspondingminimum cell value of respective rows or columns by performing row or column operation. This means *if any row or column have two or more cells having <u>same minimum value</u> then these row or column will have more than one zero. However, having two zeros does not necessarily imply two equal values in the original assignment matrix just before row and column operations. <u>Two zeroes in a same row can also be possible by two</u> <u>different operations</u> <i>i.e. one zero from row operation and one zero from column operation*. (2 marks)
- **b.** The order of matrix in the assignment problem is 4×4 . The total assignment (allocations) will be four. In the assignment problem when any allocation is made in any cell then the corresponding row and column become unavailable for further allocation. Hence, these corresponding row and column are crossed mark to show unavailability. In the given assignment matrix two allocations have been made in A24 (2nd row and 4th column) and A32 (3rd row and 2nd column). This implies that 2^{nd} and 3^{rd} row and 2^{nd} and 4^{th} column are unavailable for further allocation. Therefore, the other allocations are at either at A11 and A43 or at A13 and A41. (2 marks)

Question 2(8 Marks)

The Initial basic solution worked out by the shipping clerk is as follows-

VA /		Mar	ket		Suppl y
Warehous e	I	Ш	Ш	IV	J
Α	5	2 12	4 1	3 9	22
В	4	8	1 15	6	15
С	4 7	6	7 1	5	8
Req.	7	12	17	9	45

The initial solution is tested for optimality. The total number of independent allocations is 6 which is equal to the desired (m + n - 1) allocations. We introduce u_i 's (i = 1, 2, 3) and v_j 's (j = 1, 2, 3, 4). Let us assume $u_1 = 0$, remaining u_i 's and v_j 's are calculated as below-

(u_i + v_j) Matrix for Allocated / Unallocated Cells

	1	2	4	3	
	-2	-1	1	0	-3
	4	5	7	6	3
Vj	1	2	4	3	

Now we calculate $\Delta i j = C i j - (u i + v j)$ for non-basic cells which are given in the table below-

	Δ_{ij} Mat	rix	
4			
6	9		6
	1		-1

Since one of the Δ_{ij} 's is negative, the schedule worked out by the clerk is **not the optimal solution**. (1 mark)

(ii) Introduce in the cell with negative ij [R₃C₄], an assignment. The reallocation is done as follows-

	12	1	9
		+1	1
		15	
7		1	
		-1	+1

Revised Allocation Table

	12	2	8
		15	
7			1

Now we test the above improved initial solution for optimality-

(u_i + v_j) Matrix for Allocated / Unallocated Cells

-				
				Ui
2	2	4	3	0
-1	-1	1	0	-3
4	4	6	5	2

1					
		0	0	1	2
	Vi	Ζ	Ζ	4	3
1	,				

Now we calculate $\Delta i j = C i j - (u i + v j)$ for non-basic cells which are given in the table below-

	Δ_{ij} Matrix	
3		
5 9		6
2	1	

Since all i for non -basic cells are positive, the solution as calculated in the above table is the optimal solution. (2 Marks)

The supply of units from each warehouse to markets, along with the transportation cost is given below- (1 Mark)

Warehouse	Market	Units	Cost per unit (`)	Total Cost (`)
A	II	12	2	24
A	III	2	4	8
A	IV	8	3	24
В	Ш	15	1	15
С	Ι	7	4	28
С	IV	1	5	5
		Minimum To	otal Shipping Cost	104

(iii) If the clerk wants to consider the carrier of route C to II only, instead of 7 units to I and 1 unit to IV, it will involve shifting of 7 units from (A, II) to (A, I) and 1 unit to (A, IV) which results in the following table- (2 marks)

			Mar	ket		Supply
	Warehouse	I	I	III	IV	ouppiy
	Α	5 7	2 4	4 2	3 9	22
(iv)	В	4	8	1 15	6	15
(iv)	С	4	6 8	7	5	8
	Req.	7	12	17	9	45

Warehouse	Market	Units	Cost per unit (`)	Total Cost (`)
A	I	7	5	35
A	I	4	2	8
A	III	2	4	8
A	IV	9	3	27
В		15	1	15
С	I	8	6	48

The transportation cost will become- (1 mark)

Minimum Total Shipping		
Cost	141	

The total shipping cost will be `141. Additional

Transportation Cost `37.

The carrier of C to II must reduce the cost by `4.63 (`37/8) so that the total cost of transportation remains the same and clerk can give him business. (1 mark)

Question 3(12 Marks)WorkingsStatement Showing "Cost Driver Rate" (4 Marks)

Overhead	Cost(`) - Lacs	Cost Driver	Cost Driver Rate (`)
Production Line Cost	2,310	60,000 Machine Hrs.	3,850 <i>per hr.</i> <u>2,310lacs</u> 60,000hrs.
Transportation Cost			
Delivery Related (60%)	540	640 Deliveries	84,375 <i>per delivery</i> 540lacs 640delivery
Distance Related (40%)	360	2,25,000 Kms.	160 <i>per km</i> 360lacs 2,25,000kms.

(i) Forecast Total Cost using Activity Based Costing Principles (4 Marks)

Elements of Cost				``
Material				4,75,000.00
Labour				2,50,000.00
Overhead				
Production Line Cost (`3,8	350 × 6 hrs.)			23,100.00
Transportation Cost -				
Delivery Related	`84,375			8,437.50
,	10 cars			
Distance Related	`160 ×	50,000 kms		8,000.00
	1,000	cars		
			Total	7,64,537.50

(ii) Calculation of Cost Gap Between Forecast Total Cost and the Target Total Cost (4 Marks)

Particulars	Amount (`)
Target Selling Price	9,75,000.00
Less: Operating Profit Margin (25%)	2,43,750.00
Target Cost (Target Selling Price – Operating Profit)	7,31,250.00
Forecast Total Cost	7,64,537.50
Cost Gap (`7,64,537.50 – `7,31,250)	33,287.50

Question 4(8 Marks)		
(i)	Standard Price per Kg. of Dire	
	Material Price Variance	= Standard Cost of Actual Quantity – Actual Cost
	\Rightarrow 5,000 (F) Standard Cost of Actual Quantit	= Standard Cost of Actual Quantity – ` 5,20,000
	Standard Cost of Actual Quanti	= ` 5,20,000 + ` 5,000
		` 5,25,000
	Standard Cost of Actual Quanti	y .
		= Standard Price per Kg. × Actual Quantity
	` 5,25,000	= Standard Price per Kg. × 1,05,000 Kg.
		<u> </u>
	Standard Price per Kg.	= 1,05,000Kg.
		= `5
(ii) St	andard Quantity for each unit	
Mate	erial Usage Variance	 Standard Cost of Standard Quantity for Actual
		Output – Standard Cost of Actual Quantity
2	25,000 (A) =	 Standard Cost of Standard Quantity for Actual
		Output – ` 5,25,000
Standard	Cost of Standard Quantity for Ac	tual Outout
Otandard	•	5,25,000 – ` 25,000
		5,00,000
		0,00,000
Standard Cos	st of Standard Quantity for Actual	Output
		Price per Kg. ×Standard Quantity for
	Actual O	
⇒ ` 5,00,0		ndard Quantity for Actual Output
Standard Qua	antity for Actual Output 5,00	000
	=	·
	= 1,00,000	5 Ka
Standard Our	antity for each unit of output	ng.
	•	<u>00 Kg.</u> 10,000 units
	10 Kg.	
- 5	Standard Rate of Direct Labour	Hour (1 ½ marks)
		ost of Actual Time – Actual Cost
	I5,500 (A) = Standard Cost of Cost of Actual Time = ` 3,08,00	Actual Time – ` 3,08,000)0 – ` 15,500.
	=` 2,92,500	
	Cost of Actual Time = Standard I 2,92,500 = Standard Rate p	Rate per hr. × Actual Hours er hr. × 19,500 hrs.
Standard	Rate per hr. = ` 2,92,500 / 19,50	00 hrs. = 15
(i) S	Standard Time for Actual Produ	uction (1 ½ marks)

Labour Efficiency Variance = Standard Cost of Standard Time for Actual Production – Standard Cost of Actual Time 7,500 (F) = Standard Cost of Standard Time for Actual Production – `2,92,500 Standard Cost of Standard Time for Actual Production = `2,92,500 + `7,500 =` 3,00,000

Standard Cost of Standard Time for Actual Production = Standard Rate per hr.× Standard Time for Actual Production 300000 = `15 × Standard Time for Actual Production

Standard Time for Actual Production = 300000/15 = 20000 hours

Standard Variable Overhead Rate(1 1/2 marks)

Variable Overhead Variance	= Standard	Variable	Overheadsfor	Production
	– Actual Va	ariable Over	heads	
10,000 (A)	= Standard	Variable	Overheads	for Production
	-`4,10,00	0		
Standard Variable Overheads for	r Production = ` 4	4,10,000 – `	` 10,000 =` 4,00	0,000

Standard Variable Overheads for Production = Standard Variable Overhead Rate Unit × Actual Production (Units)

` 4,00,000 = Standard Variable Overhead Rate Unit x 10000 units

Standard Variable Overhead Rate Unit = 40

Or

Standard Variable Overheads for Production = Standard Variable Overhead Rate per Hr × Std Hrs for Actual Production

` 4,00,000 = Standard Variable Overhead Rate per Hour × 20,000 hrs

Standard Variable Overhead Rate per hour = 20

Question5 (6 Marks)

Valid or Invalid

SI. No.	Statements	Valid or Invalid
(i)	In the introduction stage, usual marketing strategy is to strengthen the supply chain relationships to make the product easily accessible by target customers.	Valid
(ii)	In the introduction stage, competitors will purchase the product to carry out reverse engineering and understand how the product works, so that they can develop their own similar, but different product.	Valid
(iii)	In the introduction phase, the firm will seek to avoid this competition by maintaining its selling price at the end of the introduction stage.	Invalid
(iv)	In the growth stage, if the product cannot be differentiated in other ways, the firm may need further reductions in selling price to maintain growth.	Valid
(v)	In the maturity stage, firms are tempted to engage in costly promotional price wars to wean away market share from competitors.	Valid
(vi)	In the decline stage, failing sales may induce firms to slash marketing expenditure. Brand loyalty will be exploited to create profits.	Valid

Question 6 (8 Marks)

Preparation of Production Cost Budget for 50,000 units for the year 2014 (4 Marks)			
Particulars	Cost Per Unit	TotalAmount (`)	
Materials (W.N1)	1.645	82,237.50	
Wages (W.N2)	1.43	71,500.00	
Variable Overhead	0.50	25,000.00	
Fixed Overhead (`35,000 × 110%)	0.77	38,500.00	
Total Cost	4.345 (Approx.)	2,17,237.50	

Working Notes

1. Material Cost- (2 Marks)

(a) Increase in Material Price in the Year 2013-

$$= \frac{\frac{53,750}{43,000\text{ units}}}{1} \times 100$$

(v) Material Required to Produce 50,000 units-<u>42,000 units</u> ×50,000 units

39,900 units

52,632 units (rounded)

(vi) Increased Cost for 50,000 units in the Year 2014-

<u>`53,750</u> ×125%×52,632 43,000 units units

`82,237.50

=

Rate per hour in 2014-

Wages Paidin the Year 2013 + `0.20 Actual Units Produced

 $= \frac{`44,660}{40,600} + `0.20$ units

= `1.30

- (b) Wages to be paid for 50,000 units i.e. for 50,000 hours (1 hour per unit). When the labour efficiency is 90% only, then Total Wages will be-
 - = 50,000 hours×<u>110</u>×`_{1.30} 100
 - = `71,500

Note: **Fixed Overhead** can also be calculated on the basis of previous year's budgeted figure. **Variable Overhead** may also be calculated by taking `1 per unit.

This question can also be solve by taking 50,000 hrs. as 90% of total hrs. required to produce the 50,000 units.

8 Page